TRIDONIC

LED Driver
Compact fixed output

Driver LC 15W 300/350mA fixC SR SNC2

essence series

Product description

- Independent driver with strain-relief housing
- Extra flat housing for constrained installation conditions (small ceiling cut outs and low ceiling voids)
- For luminaires of protection class II
- For luminaires with M and MM as per EN 60598, VDE 0710 and VDE 0711
- Temperature protection as per EN 61347-2-13 C5e
- Output current 300 or 350 mA
- Max. output power 15 W
- Nominal life-time up to 50,000 h
- 5-year guarantee

Housing properties

- Casing: polycarbonat, white
- Type of protection IP20
- Push-in terminals
- 2 separate strain relief parts for input and output cables with highly robust clamps

Functions

- Overload protection
- Short-circuit protection
- No-load protection
- No output current overshoot at mains on/off
- Burst protection voltage 1 kV
- Surge protection voltage 0.5 kV (L to N)
- Surge protection voltage 1 kV (L/N to earth)

Typical applications

- For spot light and downlight in retail and hospitality application
- For panel light and area light in office and education application

Standards, page 3

Wiring diagrams and installation examples, page 3

TRIDONIC

 RoHSLED Driver
Compact fixed output

Driver LC 15W 300/350mA fixC SR SNC2

essence series

Technical data	$220-240 \mathrm{~V}$
Rated supply voltage	$198-264 \mathrm{~V}$
AC voltage range	$50 / 60 \mathrm{~Hz}$
Mains frequency	$320 \mathrm{~V} \mathrm{AC}, 1 \mathrm{~h}$
Overvoltage protection	$\leq 150 \%$
THD (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	$\pm 7.5 \%$
Output current tolerance ${ }^{\text {® }}$	$\pm 5 \%$
Typ. output LF current ripple at full load	$\leq 0.5 \mathrm{~s}$
Starting time (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	$\leq 0.5 \mathrm{~s}$
Turn off time (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	0 s
Hold on time at power failure	$-20 \ldots+50^{\circ} \mathrm{C}$
Ambient temperature ta	$40{ }^{\circ} \mathrm{C}$
Ambient temperature ta (at life-time $50,000 \mathrm{~h}$)	$-40 \ldots+80^{\circ} \mathrm{C}$
Storage temperature ts	$u p ~ t o ~ 50,000 \mathrm{~h}$
Life-time	$100 \times 43 \times 22.5 \mathrm{~mm}$
Dimensions $\mathrm{L} \times \mathrm{W} \times \mathrm{H}$	

Ordering data

\(\left.$$
\begin{array}{lllllll}\hline \text { Type } & \begin{array}{l}\text { Article } \\
\text { number }\end{array} & \begin{array}{l}\text { Packaging, } \\
\text { carton }\end{array} & \begin{array}{l}\text { Packaging, } \\
\text { low volume }\end{array}
$$ \& \begin{array}{l}Packaging,

high volume\end{array} \& Wc.\end{array}\right]\)| LC 15/300/50 fixC SR SNC2 | $\mathbf{8 7 5 0 0 7 4 6}$ | $39 \mathrm{pc}(\mathrm{s})$. | $819 \mathrm{pc}(\mathrm{s})$. | $5,733 \mathrm{pc}(\mathrm{s})$. | 0.058 kg |
| :--- | :--- | :--- | :--- | :--- | :--- |
| LC 15/350/43 fixC SR SNC2 | $\mathbf{8 7 5 0 0 7 4 7}$ | $39 \mathrm{pc}(\mathrm{s})$. | $819 \mathrm{pc}(\mathrm{s})$. | $5,733 \mathrm{pc}(\mathrm{s})$. | 0.058 kg |

Specific technical data

Type	Output current ${ }^{\text {(1) }}$	Input current (at 230 V , 50 Hz , full load)	Max. input power	Typ. power consumption (at 230 V , 50 Hz , full load)	Output power range	λ at full load ${ }^{\text {® }}$	```Efficiency at full load ($```	λ at min. load ${ }^{\text {(}}$	```Efficiency at min. load ($```	Min. forward voltage	Max. forward voltage	Max. output voltage	Max. output peak current ${ }^{(2)}$	Max. casing temperature tc
LC 15/300/50 fixC SR SNC2	300 mA	145 mA	18 W	17.7 W	$8.4-15.0$ W	0.55 C	87 \%	0.55C	85 \%	28 V	50 V	85 V	340 mA	$80^{\circ} \mathrm{C}$
LC 15/350/43 fixC SR SNC2	350 mA	145 mA	18 W	17.7 W	$8.8-15.1$ W	0.55 C	86 \%	0.55C	84 \%	25 V	43 V	85 V	400 mA	$80^{\circ} \mathrm{C}$

[^0]
1. Standards

EN 55015
EN 61000-3-2
EN 61000-3-3
EN 61347-1
EN 61347-2-13
EN 61547
EN 60598-1
EN 62384

1.1 Glow wire test

according to EN 60598 -1 with increased temperature of $850^{\circ} \mathrm{C}$ passed.

2. Thermal details and life-time

2.1 Expected life-time

Expected life-time			
Type	ta	$\mathbf{4 0}$	
LC $\mathbf{~ 1 5 / 3 0 0 / 5 0 ~ f i x C ~ S R ~ S N C 2 ~}$	tc	$\mathbf{5 0}{ }^{\circ} \mathrm{C}$	
	Life-time	$50,000 \mathrm{~h}$	$30,000 \mathrm{~h}$
LC 15/350/43 fixC SR SNC2	tc	$70^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$
	Life-time	$50,000 \mathrm{~h}$	$30,000 \mathrm{~h}$

The LED Drivers are designed for a life-time stated above under reference conditions and with a failure probability of less than 10%.

3. Installation / wiring

3.1 Circuit diagram

220-240 V
$50 / 60 \mathrm{~Hz}$

3.2 Wiring type and cross section

The wiring can be in stranded wires with ferrules or solid with a cross section of $0.5-1.5 \mathrm{~mm}^{2}$. Strip $8.5-9.5 \mathrm{~mm}$ of insulation from the cables to ensure perfect operation of the push-wire terminals.
Use one wire for each terminal connector only.
The max. torque at the clamping screw (M3) is 0.3 Nm .

The following cable types are approved and recommended by Tridonic:
RVVB $2 \times 0.5 \mathrm{~mm}^{2}$
RVVB $2 \times 0.75 \mathrm{~mm}^{2}$
RVVB $2 \times 1 \mathrm{~mm}^{2}$
RVVB $2 \times 1.5 \mathrm{~mm}^{2}$
RVV $3 \times 0.75 \mathrm{~mm}^{2}$
SOLID $2.5 \mathrm{~mm}^{2}$

3.3 Release of the wiring

Press down the "push button" and remove the cable from front.

3.4 Fixing conditions when using as independent Driver with Clip-On

Dry, acidfree, oilfree, fatfree. It is not allowed to exceed the maximum ambient temperature (ta) stated on the device. Minimum distances stated below are recommendations and depend on the actual luminaire. Is not suitable for fixing in corner.

3.4 Wiring guidelines

- All connections must be kept as short as possible to ensure good EMI behaviour.
- Mains leads should be kept apart from LED Driver and other leads (ideally $5-10 \mathrm{~cm}$ distance)
- Max. length of output wires is 2 m .
- The secondary wires (LED module) should be routed in parallel to ensure good EMC performance.
- Secondary switching is not permitted.
- Incorrect wiring can demage LED modules.
- To avoid the damage of the Driver, the wiring must be protected against short circuits to earth (sharp edged metal parts, metal cable clips, louver, etc.).

3.5 Replace LED module

1. Mains off
2. Remove LED module
3. Wait for 10 seconds
4. Connect LED module again

Hot plug-in or secondary switching of LEDs is not permitted and may cause a very high current to the LEDs.

3.6 Installation instructions

The LED module and all contact points within the wiring must be sufficiently insulated against 3 kV surge voltage.
Air and creepage distance must be maintained.

3.8 Mounting of device

Max. torque for fixing: $0.5 \mathrm{Nm} / \mathrm{M} 4$

LED Driver

Compact fixed output

4. Electrical values

4.1 Diagrams LC 15W 300mA fixC SR SNC2

4.1.1 Efficiency vs load

4.1.2 Power factor vs load

4.1.3 Input power vs load

4.1.4 Input current vs load

4.1.5 THD vs load

THD without harmonic $<5 \mathrm{~mA}$ (0.6%) of the input current:

LED Driver

Compact fixed output

4.2 Diagrams LC 15W 350mA fixC SR SNC2

4.2.1 Efficiency vs load

4.2.2 Power factor vs load

4.2.3 Input power vs load

4.2.4 Input current vs load

4.2.5 THD vs load

THD without harmonic < $5 \mathrm{~mA}(0.6 \%)$ of the input current:

4.3 Maximum loading of automatic circuit breakers in relation to inrush current

Automatic circuit breaker type	C10	C13	C 16	C20	B10	B13	B16	B20	Inrush current	
Installation \varnothing	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	$I_{\text {max }}$	Time
LC 15/300/50 fixC SR SNC2	52	67	85	104	32	41	50	62	14.5 A	$114 \mu \mathrm{~s}$
LC 15/350/43 fixC SR SNC2	52	67	85	104	32	41	50	62	14.5 A	$114 \mu \mathrm{~s}$

This are max. values calculated out of inrush current! Please consider not to exceed the maximum rated continuous current of the circuit breaker. Calculation uses typical values from ABB series S200 as a reference.
Actual values may differ due to used circuit breaker types and installation environment.
4.4 Harmonic distortion in the mains supply (at $230 \mathrm{~V} / 50 \mathrm{~Hz}$ and full load) in \%

	THD	3.	5.	7.	9.	11.
LC 15/300/50 fixC SR SNC2	<150	<90	<70	<50	<30	<25
LC 15/350/43 fixC SR SNC2	<150	<90	<70	<50	<30	<25

Acc. to 6100-3-2. Harmonics < 5 mA or $<0.6 \%$ (whatever is greater) of the input current are not considered for calculation of THD.

5. Functions

5.1 Short-circuit behaviour

In case of a short circuit on the secondary side (LED) the LED Driver switches into hic-cup mode. After elimination of the short-circuit fault the LED Driver will recover automatically.

5.2 No-load operation

The LED Driver works in burst working mode to provide a constant output voltage regulation which allows the application to be able to work safely when LED string opens due to a failure.

5.3 Overload protection

If the output voltage range is exceeded the LED Driver will protect itself and LED may flicker. After elimination of the overload, the nominal operation is restored automatically.

6. Miscellaneous

6.1 Insulation and electric strength testing of luminaires

Electronic devices can be damaged by high voltage. This has to be considered during the routine testing of the luminaires in production.

According to IEC 60598-1 Annex Q (informative only!) or ENEC 303-Annex A, each luminaire should be submitted to an insulation test with 500 V dc for 1 second. This test voltage should be connected between the interconnected phase and neutral terminals and the earth terminal.
The insulation resistance must be at least $2 \mathrm{M} \Omega$.

As an alternative, IEC 60598-1 Annex Q describes a test of the electrical strength with 1500 V AC (or $1.414 \times 1500 \mathrm{~V}$ DC). To avoid damage to the electronic devices this test must not be conducted.

6.2 Conditions of use and storage

Humidity: $\quad 5 \%$ up to max. 85%, not condensed
(max. 56 days/year at 85%)

Storage temperature: $-40^{\circ} \mathrm{C}$ up to max. $+80^{\circ} \mathrm{C}$
The devices have to be within the specified temperature range (\dagger a) before they can be operated.

6.3 Maximum number of switching cycles

All LED Driver are tested with 50,000 switching cycles.
The actually achieved number of switching cycles is significantly higher.

6.4 Additional information

Additional technical information at www.tridonic.com \rightarrow Technical Data

Guarantee conditions at www.tridonic.com \rightarrow Services

Life-time declarations are informative and represent no warranty claim. No warranty if device was opened.

[^0]: Test result at $230 \mathrm{~V}, 50 \mathrm{~Hz}$
 ${ }^{2}$ The trend between min. and full load is linear.
 ${ }^{\text {(3) }}$ Output current is mean value.

